Randomized phase-II trial of abiraterone acetate plus LHRH-therapy versus abiraterone acetate sparing LHRH-therapy in patients with progressive chemotherapy-naïve castration-resistant prostate cancer (SPARE).

AUO

Carsten-H. Ohlmann
Randomized phase-II trial of abiraterone acetate plus LHRH-therapy versus abiraterone acetate sparing LHRH-therapy in patients with progressive chemotherapy-naïve castration-resistant prostate cancer (SPARE)

SPARE-001

| Sponsor/Medical Monitor | Carsten-Henning Ohlmann, M.D.
Department of Urology
Saarland University
Kirbergerstr. 1, 66421 Homburg/Saar |
|-------------------------|--|
| | Phone: +49-6841-16-24700
Fax: +49-6841-16-24026
e-mail: carsten.ohlmann@uks.eu |
Hormone therapy of PCa

LHRH-Analoga/ Antagonisten → ZNS

Hoden

Testosteron

Tumorzelle

Testosteron
Hormone therapy of PCa

- LHRH-Analoga/Antagonisten
- ZNS
- Abirateron
- Testosteron
- Nebenniere
- Tumorzelle

Abirateron inhibits testosterone production in the testicles and adrenal glands, as well as in the tumor cells.
Testosterone-independent effects of LH

LHRH-Analoga/Antagonisten → ZNS

Abirateron → Hoden

Abirateron → Nebenniere

Testosteron → Tumorzelle

LH → Testosteron

Abirateron → Testosteron
LH/LH-receptor expression in PCA cells

LH stimulation of LNCaP cells

Randomized phase-II trial of abiraterone acetate plus LHRH-therapy versus abiraterone acetate sparing LHRH-therapy in patients with progressive chemotherapy-naïve castration-resistant prostate cancer (SPARE)

Primärer Endpunkt: radiographisch progressions-freies Überleben (rPFS)
Sekundäre Endpunkte: PSA-Ansprechen, PSA-progressions-freies Überleben, Toxizität, Effekt auf Hypophysen-Gonaden-Achse
Randomized phase-II trial of abiraterone acetate plus LHRH-therapy versus abiraterone acetate sparing LHRH-therapy in patients with progressive chemotherapy-naïve castration-resistant prostate cancer (SPARE)

Bewertung durch die EK: April 2013
First patient first visit: Mai 2013
Last patient enrolled: Mai 2014
Last patient last visit: Sep 2015
Interimsanalyse nach 35 Patienten: Nov 2014
Abschlussbericht: Jan 2016
<table>
<thead>
<tr>
<th>Required Investigations</th>
<th>Screening Day -14 to 1</th>
<th>Cycle 1 Day 1</th>
<th>Cycle 1 Day 15</th>
<th>Cycle 1 Day 15</th>
<th>Cycle 2, 3, 5, 6, 8, 9, 11, 12 Day 1</th>
<th>Cycle 4, 7, 10 Day 1 and at Treatment Discontinuation</th>
<th>Cycle 3, 5, 7, 9, 11 Day 1 and at Treatment Discontinuation</th>
<th>End of Study Visit³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signed consent form⁴</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical history, prior Prostate therapies</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst pain within last 24 hours</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical exam and Weight</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vital signs²</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECOG</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Lead ECG²</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac ECHO²</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing compliance</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concomitant medication</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse events</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Assessments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematology</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum chemistry, electrolytes</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver function test</td>
<td>X²</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose¹⁰</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum lipids</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSA¹¹</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum testosterone, hormones and biomarker</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor Assessments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT/MRI¹²</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone Scan¹³</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease progression Assessments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Review

The role of choline in prostate cancer

Hussain Mohamad Awwad, Juergen Geisel, Rima Obeid *

Saarlnd University Hospital, Department of Clinical Chemistry and Laboratory Medicine, Building 57, 66421 Homburg/Saar, Germany

ARTICLE INFO

Article history:
Received 15 May 2012
Received in revised form 6 August 2012
Accepted 10 August 2012
Available online 19 August 2012

Keywords:
Choline
Methyl
Prostate cancer
Phospholipids

ABSTRACT

Choline is an essential nutrient that is necessary for cell membrane synthesis and phospholipid metabolism and functions as an important methyl donor. Multiple roles for choline in cancer development have been suggested. Choline can affect DNA methylation and lead to a disruption of DNA repair. It can also modify cell signaling that is mediated by intermediary phospholipid metabolites, and it can support the synthesis of cell membranes and thus support cell proliferation. A higher intake or status of choline in plasma and tissues has been related to higher cancer risks. Prostate cancer shows elevated levels of choline uptake and levels of certain choline metabolites. Choline metabolites can be used as potential prognostic biomarkers for the management of prostate cancer patients. Targeting certain enzymes, which are related to choline metabolism, provides promising therapeutic opportunities for tumor growth arrest. This review summarizes the potential role of choline metabolism in cancer, especially in prostate cancer.

© 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Weitere Projekte...?

carsten.ohlmann@uks.eu
Danke!

Carsten-H. Ohlmann